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The architecture of the human rhinovirus is shown to be based on a
crystallographic polyhedron (the ico-dodecahedron) with 60 triangular facets
and 32 vertices at points of a body-centered icosahedral lattice. The ico-
dodecahedron is only slightly different from the 7 = 3 icosadeltahedron of
Caspar & Klug [Cold Spring Harbor Symp. Quant. Biol. (1962), 27, 1-24]. The
capsid of the virion is encapsulated between two ico-dodecahedra in scaling
relation by a factor 7, the golden number. Clusters with axial symmetry of the
coat proteins VP1, VP2, VP3 and VP4 are considered (decamers, pentamers,
hexamers, trimers and tetramers). Their crystallographic enclosing forms obey
the same laws as a number of axial-symmetric proteins, involving planar and
linear crystallographic scaling relations and having vertices at points of lattices
with an integral metric tensor. These properties also occur for the icosahedral
cluster of each coat protein viewed along the symmetry axes (fivefold, threefold
and twofold, respectively). The structural organization of the rhinovirus in terms
of all these enclosing forms is independent of the serotype (16, 14, 3,2, 1A) and
is typical for a strongly correlated system, as it depends on one single free
parameter, taken to be the icosahedral lattice parameter ay, which relates the
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1. Introduction and background

Rotational symmetry plays a fundamental role in biomacro-
molecules. The icosahedral viruses are among the most
impressive examples. Less known is the crystallographic
character of the molecular symmetries and the interplay
between rotations and scaling transformations in these struc-
tures.

In particular, axial-symmetric proteins have been shown to
have molecular enclosing forms with non-trivial crystal-
lographic rotation and scaling properties (Janner, 2005a,b,c).
Axial symmetry implies that these transformations are
essentially planar. Essentially means that one disregards
possible additional perpendicular twofold rotations. Crystal-
lographic means a transformation expressible with respect to a
basis of n vectors in space as an n-dimensional invertible
matrix with integral entries. Accordingly, the vertices of the
polyhedral molecular forms have vertices labeled by a set of n
integers (the indices), which are the integral components of
the corresponding position vectors with respect to the 7 basis
vectors. When this is the case, the forms (and the polyhedra)
are said to be crystallographic. The most important scalings
observed in axial-symmetric proteins are the polygrammal
ones (as in regular star polygons). They relate, in particular,
the external boundary of the protein to the boundary of a
central hole.

geometry with the real structure (up to small variations).

The aim of the present work is to investigate the validity of
analogous scale-rotational relations in the cubic case of
icosahedral viruses. In a strict sense, the icosahedral group is
only crystallographic in six dimensions where it leaves a lattice
invariant. In three dimensions, it is, however, possible to define
six basis vectors which are transformed by the icosahedral
point group 532 into integral-linear combinations of the basis
vectors. Therefore, according to the definition given above, the
icosahedral group is crystallographic. This point of view is
supported by the symmetry properties of the icosahedral
quasicrystal phases occurring in nature. These quasicrystals
also have radial (isotropic) scaling properties with scaling
factor T or 7°, depending on the icosahedral lattice left
invariant (primitive, face centered or body centered), where t
denotes the golden mean (1 + V5)/2.

Encasing forms for icosahedral viruses have been postu-
lated by Caspar & Klug in a classical paper of 1962 (Caspar &
Klug, 1962). Generalizing the construction of the Fuller
geodesic dome, Caspar & Klug consider polyhedra whose
faces are all equilateral triangles (deltahedra) and derive the
deltahedra with icosahedral symmetry (icosadeltahedra). They
show that these polyhedra have 207 facets, where T is the
triangulation number. The possible values of T are restricted
by the condition

T =h +hk+k*> h k arbitrary integers. )
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This restriction follows from the construction of the icosa-
deltahedron from a planar hexagonal net.

Not all icosahedral viruses obey the Caspar-Klug rule, but
most do and remarkably well, in particular for the 7 = 3 case
of the picorna viruses, where T corresponds to the number of
the major coat proteins VP1, VP2, VP3 of the capsid. A fourth
protein VP4 of the 60 protomers lies mostly inside the capsid.
The largest genus among the picorna viruses is the rhinovirus.
It occurs in about 100 different serotypes. Considered here are
the five serotypes 16, 14, 3, 2 and 1A, whose structures have
been determined by X-ray diffraction (Kim et al., 1989; Arnold
& Rossmann, 1990; Zhao et al., 1996; Hadfield et al., 1997,
Verdaguer et al., 2000) with data available from the Brook-
haven Protein Data Bank (PDB).

Before being able to compare the rhinovirus with axial-
symmetric proteins, one has to answer two basic questions.

1. Is there a crystallographic icosahedral encasing form for
the rhinovirus?

2. Does one also have an icosahedral scaling relation

between the indexed external envelope and the boundary of
the central hole of the capsid?
The first question is due to the fact that the 7 = 3 icosa-
deltahedron is not crystallographic. It can be viewed as a
regular dodecahedron with pentagonal pyramids on each face.
The 32 vertices of this polyhedron do not have integral indices
with respect to a single set of six basis vectors. The second
question arises because of the planar characterization of the
capsid. It only involves the three major coat proteins VP1,
VP2 and VP3 and does not include the fourth protein VP4 of
the protomer, which also plays a role in delimiting the cavity
filled by the RNA.

In the present paper, both questions get a positive answer.
The crystallographic form enclosing the capsid appears to be a
combination of an icosahedron with a regular dodecahedron
obtained from the icosahedron by crystallographic scaling.
The result is a polyhedron with 32 vertices denoted ico-
dodecahedron, deviating only slightly from the icosadelta-
hedron. The whole capsid is then delimited by two such ico-
dodecahedra in a radial scaling related by a factor 7.

But there is more. Again the paper of Caspar & Klug shows
the conceptual way to follow. One finds on page 3 of Caspar &
Klug (1962): The essential point about grades of organization is
that large structures are built out of smaller structures. More-
over, on page 4: The structure of simple viruses is principally
determined by an ordered packing of protein subunits. The
subunits are obtained by clustering of monomers, say in
pentamers, hexamers, trimers, dimers and so on, forming
morphological units invariant with respect to subgroups of the
icosahedral group, like 5, 52, 3, 32 and 222. In this way, one is
back to axial-symmetric biomacromolecules. Indeed, for these
clusters, one finds again indexed molecular forms with the
expected properties: polygrammal scaling and lattices with
integral metric (integral lattices), in particular. This applies for
each of the four coat proteins and the five serotypes consid-
ered. One gets in such a way an overwhelming number of
crystallographic forms, impossible to present adequately in a
single paper. In addition to a numerical characterization of

these forms given in various tables, only some illustrative
examples are presented in figures to allow the reader to get a
feeling of the very sophisticated structural organization of
rhinoviruses revealed by the existence of a whole set of
crystallographic enclosing forms. At the level of the poly-
peptide chains, this ordering, implicitly required by the form
confinement, is still hidden. While the serotype depends on the
detailed structure of the chains, the present investigation
shows that the enclosing forms and their organization is the
same for all the five serotypes analyzed. This conserved
property is true up to small differences owing to slight changes
in the constant scaling factor relating the geometry with the
physical structure, and to a more or less ideal fitting of the
chains in their crystallographic forms. These facts explain the
great structural similarity observed among different serotypes.

2. Structural data, geometry and notation
2.1. Indexed icosahedral forms

In addition to the orthonormal basis e = {e, e,, €5}, a
symmetry-adapted icosahedral basis a={a;,...,a¢} is
defined with vectors pointing to the six non-aligned vertices of
an icosahedron. The components of a vector in the bases e and
a are indicated in round and in square brackets, respectively:

r=(x,y,z) = [nynynynynsngl. (2
With this convention, the icosahedral basis is given by

a, = (1,0, 7) =[100000], a, = (t, 1, 0) = [010000],
ay = (0, 7,1) = [001000], a, = (—1,0, ) = [000100], (3)
as = (0, —t, 1) = [000010], a, = (z, —1, 0) = [000001].

A visualization is easy when the components are given in the
orthonormal basis, the crystallographic character becomes
explicit only in the icosahedral basis. The indices of a point P
are the components n,, n,, ..., n, of the position vector rp.
The six vectors a; are linearly dependent on the reals, but they
are linearly independent of the rationals. It implies that only
rational indices are uniquely determined. Only then does a six-
dimensional description in the three-dimensional space make
sense. Note that the properties of rational indices are the same
as for integral indices as the two sets only differ by a constant
integer. In the basis a, the vertices I, of the icosahedron have
indices which are permutations of [+100000]. These sets of
indices are obtained by applying to one of them the icosa-
hedral group.
The icosahedral group 532 is defined by

532 ={a, Blo’ = B = (Ba)’ = 1}. 4)

In the orthonormal basis e, the two generators « and B are
represented by the rotation matrices Rs(e) and R;(e), respec-
tively:
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1 -7 t—1
Rse)=3% = -1 -1 [,
T—1 1 T
T 1—1 1 ©)
Ri(e)=3| 7—1 -1 -1
1 T 1—-1

In the basis a, the same rotations are given by integral
matrices:

100 00 0
000001
Rs(a)=0100007 ©

: 001000
000100
00 0O0T10
001000
1 0000 0

R@=|2 12000 ™
00 0O0T10
000001
000100

The 20 threefold axes of the icosahedron allow one to define
the vertices of a regular dodecahedron. In particular, by
applying the icosahedral group to the vector a; + a, + a;, one
finds the indices of dodecahedral vertices:

(1,1, 1) = [111000], (0, 1, 7%) = [101100], ...,
7(—72,0,1) = [010101]. )

Scaling this dodecahedron by a factor 1/7%, one gets a new
dodecahedron with vertices D, :

(1,1,1) = I[111111], (0,1, 7) =1[111111],...,
1 -
(—z, 0,;) = I[111111]. )

The corresponding scaling transformation S .. is given by the
matrices:

1/2 0 0
Sye@=| 0 1/ 0 [,
o 0 17
3 -1 -1 -1 -1 -1
1 3 -1 1 1 -1 (10)

By applying S ,2(a) to the indices of the initial dodecahedron,
one indeed gets the indices of the rescaled dodecahedron
indicated in (9).

The ico-dodecahedron mentioned in the Introduction is the
combined polyhedron with 32 vertices: 12 of the icosahedron
and 20 of the rescaled dodecahedron. As the icosadeltahedron
of Caspar & Klug, it is a regular dodecahedron with pentag-
onal pyramids on each face. The resulting 60 triangular facets
are not equilateral, but the deviation is small. In Fig. 1, the ico-
dodecahedron is shown viewed along a fivefold axis, a three-
fold axis and a twofold axis, respectively.

2.2. Rhinoviruses

The starting point is the chains A,, B, C,, D, of the poly-
peptide C* backbone for the coat proteins VP1, VP2, VP3,
VP4, respectively, of human rhinovirus (HRV) taken from the
data in the Brookhaven Protein Data Bank for various sero-

types.

0,0,1,0.0,0

-12,1/2,1/2,112,-1/2,172
0.0,1,0,0.0

1/2,1/2,-1/2,1/2,1/12

0,0,1,0,0,0
0,0,0,-1,0,0
-12,12,-1/2,1/2,112,1/2

“12,-12,142,- 112,112,112

0,0,0,-1,0,0

-112,112,-1/2,-1/2,142,-172

Figure 1

The ico-dodecahedron, a combination of an icosahedron and a
dodecahedron, is shown along a fivefold axis (upper part), a twofold
axis (central part) and a threefold axis (lower part), respectively. It has 60
triangular facets and 32 vertices. The 12 icosahedral vertices (large
circles) have integral indices at points of an icosahedral lattice. The 20
dodecahedral vertices (filled dots) are at body-centered lattice positions
and have half-integer indices. The ico-dodecahedron deviates only
slightly from the 7 =3 icosadeltahedron of Caspar & Klug, whose
vertices do not have rational indices.
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The crystal structure of serotype 1A (HRV1A, PDB 1rla)
was determined by Kim er al. (1989); that of serotype 14
(HRV14, PDB 4rhv) by Arnold & Rossmann (1990); that of
serotype 3 (HRV3, PDB 1rhi) by Zhao et al. (1996); that of
serotype 16 (HRV16, PDB laym) by Hadfield et al. (1997);
and finally that of serotype 2 (HRV2, PDB 1fpn) by Verdaguer
et al. (2000).

The capsid of the virion follows by applying to the Cartesian
coordinates (in A) of these starting chains the 60 elements of
the icosahedral group in the matrix representation given in the
PDB files. Successive transformations number the chains
accordingly. This numbering is the same for the data of the
serotypes 1A, 3, 14 and 16. For serotype 2, it requires a rela-
beling of the axes by the 90° rotation x — y, y — —x around
the z axis and the same set of matrices as for the other sero-
types instead of the one indicated in 1fpn.

000200

1-11111

0000-20

111-11-1

-11-11-1-1

0000-20

Figure 2

The projected views of the human rhinovirus along the fivefold, the
twofold and the threefold axis, respectively, show that the virion is
encapsulated into an ico-dodecahedral form with integral indices: even
for the icosahedral vertices (large circles) and odd for the dodecahedral
vertices (filled dots). Plotted are the backbone chains of the coat proteins:
VP1 (red), VP2 (green), VP3 (blue) and VP4 (black) of the serotype 16
(HRV16). This is also the case for the serotypes 1A, 2, 3 and 14. (The
orientation and the basis adopted here are not the same as in Fig. 1.)

One gets in this way a unique numbering of the rotational
elements R, of the icosahedral group and of the 240 chains of
the capsid for all the serotypes considered. This makes a
comparison easier. The crystallographic polyhedral form of
the virion is an ico-dodecahedron, as shown in Fig. 2 for the
serotype 16 (HRV16). The same is true for the other serotypes.
A unit of length g, relates geometry with the physical structure
and plays the role of an icosahedral lattice parameter. Taking
this parameter into account, the icosahedral basis (3) becomes

a, = ay(1,0, T) = [100000], . .., a, = a,(t, —1, 0) = [000001].
(11)

For the rhinovirus, the value of a, depends on the serotype and
also on the four coat proteins of the protomer, but is always
about 90 A, with possible deviations of a few per cent. In Fig. 2,
the lattice parameter a, = 90 A is used for HRV16.

2.3. Polyhedral form of the capsid

The property found in axial-symmetric proteins (Janner,
2005a,b,c) consisting in a crystallographic scaling relation
between central hole and envelope also applies to the two ico-
dodecahedra enclosing the capsid of the rhinovirus. It is the
simplest scaling relation one possibly expects for an icosa-
hedral virus: a radial scaling by a factor t, which is indeed
crystallographic:

Sr(e) =

S O N
S A O

(12)

—_
e e
|
—_
|
—_
—_

-1 -1 1 1
1 -1 -1 1 1

95}
~
~
S
SN
Il
I
N e T T S

S, is integral when expressed in a body-centered icosahedral
basis. By applying S, ,, = S-! to the indices of the 12 icosa-
hedral vertices I, one gets the corresponding ones J, = S;'I,
of a 1/7-scaled icosahedron:

1 - - -
ag (—, 0, 1) =1[111111], ay(1,%,0) =1[111111], ...,
T
1 LTS
In a way similar to the 20 dodecahedral vertices D; of the ico-
dodecahedron [exemplified in (9) up to the lattice parameter

a,), one finds the indices of the dodecahedral vertices
F, = S7'D, of the 1/t-scaled ico-dodecahedron:

111 - 1 -
a, () = [000111], a0<0,2, 1) =[010011], ...,
TTT T
1 -
ao(—l,O, §> = [101010]. (14)
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The molecular form of the capsid consists of these two ico-
dodecahedra: one enclosing the external surface of the capsid
and one a factor 1/t smaller for the internal surface delimiting
the RNA cavity. This is shown in Fig. 3 for the capsid of HRV3
viewed along the fivefold, threefold and twofold axes,
respectively. In this figure, only the coat proteins are plotted
which are situated in the corresponding equatorial regions.

3. Orthorhombic, tetragonal and cubic forms for
clusters with 222 symmetry

A capsid with the icosahedral point-group symmetry 532 is
also invariant with respect to one of the subgroups. By
applying the subgroup to one of the 60 monomers of the four
coat proteins, one gets a cluster that has the symmetry of the

0,0,1,0,00

12,1/2,-172,-172,-1/2,-112
% 0.1.0.000

e -112,1/2,112,-1/2,1/2,1/2

~12,102,1/2,1/2,- 112,172
0,0,1,0,0,0

0.0,1,0,0,0

0,0,0,-1,00
-1/2,1/2,-1/2,1/2,1/2,1/2

“12,-12,112,-112,-1/2,112

0,0,0,-1,0,0

-12,112,-112,-172,112,-112

Figure 3

The capsid of the human rhinovirus is encapsulated between two ico-
dodecahedra (in the same orientation as in Fig. 1): an external one and an
internal one isotropically scaled from the envelope by a factor 1/, with
7= (14++/5)/2, the golden number. This scaling transformation is
crystallographic as it leaves the body-centered icosahedral lattice
invariant. Only the vertices and the coat proteins situated in the various
equatorial regions are plotted in a way similar to that in Fig. 2.

subgroup. For the axial subgroups, one expects cluster forms
with crystallographic properties (Janner, 2005a,b,c). The
easiest start in the verification of this expectation is to consider
the subgroup 222, generated by the twofold rotations 2,, 2,, 2,
around the axes x, y, z, respectively. The point group 222 is of
order 4, so that one gets 15 different clusters for each coat
protein, with chains indicated by their number, fixed by the
conventions introduced in the previous section. For example,
the cluster {0, 32, 37,46} of the VP1 protein consists of the
chains:

VP1[0] = A,,
VP1[37] = 2,A,,

VP1[32] =2 A,, 1)
VP1[46] =2, A,.

For each cluster, the vertices of the various encasing polyhedra
are at points of a lattice left invariant by the 222 point group.
The parameters a, b, c¢ of this lattice are in an integral relation
with the half-edge a, = ta, of the cube in which the ico-

Figure 4

The tetrameric cluster {4,31,36,45} of the coat protein VP2 has symmetry
222. It is enclosed in a form with vertices at points of the orthorhombic
lattice with parameters a, b, c satisfying the relations 9a = 7b = 6¢ = a,,
where 2a, is the edge of the cube encasing the capsid. The boundary of
the capsid is shown in projection along the z axis (upper part) and the y
axis (lower part), respectively. The prismatic envelope of the tetramer has
vertices that also delimit the four monomers. The refined molecular form
of each monomer is a polyhedron with eight vertices, shown for VP2[4] in
a perspective view at the right-hand side. The indices of these vertices are
given in the text. Plotted are the chains for the serotype 3 (HRV3).
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dodecahedron is inscribed, with a, the icosahedral lattice
parameter:

a, = ta, = z;a = z,b = z5¢, integers z, 25, Z3- (16)

The triple of integers z, z,, z; can be used for indicating the
corresponding lattice, which is integral because the metric
tensor of the basis vectors is proportional to one with integral
entries. The form lattices for the orthorhombic clusters of all
the coat proteins for the five rhinovirus serotypes have been
determined. The result, valid for all the serotypes, is
summarized in Table 1.

In the case of VP4, the forms indicated are those of HRV3
and HRV14, for which 43 and 40 residues, respectively, of the
total of 68 are visible. In the other cases, these forms have an
indicative character only, because too many residues are
missing: visible are 19 for HRV1A, 25 for HRV2 and 29 for

Figure 5

The tetramer {10,15,19,43} of the VP3 coat protein with 222 symmetry
has in fact a tetragonal form lattice with parameters satisfying the relation
9a = 8b = 8¢ = a,. In the projection along the z axis (upper part) and the
y axis (lower part), the enclosing form of the tetramer splits into two
dimeric ones, with vertices at the tetragonal lattice points (one monomer
is enhanced). This is shown in a prismatic approximation and for a refined
more complex polyhedral form. The result, plotted for HRV16, does not
depend on the serotype.

HRV16. As an illustrative example for the orthorhombic
lattice (976), the enclosing forms of the VP2 cluster
{4,31,36,45} is shown in Fig. 4 with views along the 2, and 2,
rotational axes. For the tetragonal lattice (988), the forms of
the VP3 cluster {10,15,29,43} are plotted in Fig. 5 in a similar
way. Finally, the three combined tetrameric clusters
{1,33,38,47}, {7,21,53,58}, {13,18,27,41} of VP1, which share
the same cubic lattice (777), are shown in Fig. 6. The chains
plotted in these figures belong to different serotypes. As
already mentioned, the forms are correspondingly the same
for the other serotypes.

From these figures, by counting the number of lattice points
from the origin to the various vertices, one deduces the indices
of the prismatic form enclosing the tetramer. For example,
looking at Fig. 4, one finds that the eight vertices of the pris-
matic envelope have indices [£5 +4 5], whereas the

Figure 6

The three tetrameric clusters {1,33,38,47}, {7,21,53,58}, {13,18,27,41} of
the VP1 coat protein share the same cubic form lattice a = a,/7, with a,
the half-edge of the cube encasing the capsid. In the projected views
along the z and the y axis, respectively, are shown the boundaries of the
capsid, those of the various prismatic forms and the more complex refined
polyhedral forms enclosing the chains involved. From the enhanced
monomers, one sees that these forms allow a monomeric characterization.
The result is independent of the serotype 14 plotted in this figure.
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Table 1

Orthorhombic, tetragonal and cubic form lattices for clusters with 222 symmetry of the rhinovirus coat proteins (ta, = z,a = z,b = z;c for a,

icosahedral and a, b, ¢ orthorhombic lattice parameters, respectively).

HRV1A, HRV2, HRV3, HRV14, HRV16

HRV3, HRV14

222 clusters VPL VP2

Tetramers

N
x
S
N
&
kx
2
S

VP3 VP4

N
&
kx
x
S
N
&
N
a
S
N
&

—_

—_

NNV OO I~ O~ 0N ®
—

12,17,26,40}
13,18,27,41}
14,1928 42}
10,15,29,43}
11,16,25,44}

—_
[« N =RRN BN NI oL Mo RN BES IR BN B

[*)JN=RN=REN e N WNoJN- RN Mo Nie e NoREN e
[N =IN-REN e e ie SNoREN e o NN R =)
[>)Je ) WN-REN e N WNoJN- RN Mo Ne NN BN e

vertices of the cross-like hole have indices [+5 +2 =+ 3],
[£2 £2 £3], [£2 4 £ 5]. The form of this tetramer splits
into four forms for the monomers. In particular, the chain
VP2[4] is encased in a rectangular prism with vertices at [223],
[623], [543], [423], [225], [625], [545], [425]. It is less easy to find
the indices of the polyhedron of the refined enclosing form of
the same chain. One actually needs to consider all the three
projections along the x, y and z axes. For the eight vertices of
the refined polyhedron, shown in a perspective view in Fig. 4,
one finds the indices: [225], [525], [435], [234], [444], [443],
[543], [523].

The situation presented in Fig. 5 is similar for the VP3
tetramer {10,15,19,43}, which has a tetragonal form lattice
with z;, =9, z, = z; = 8. In the case shown in Fig. 6, the form
lattice is cubic with z; = z, = z; = 7. This allows us to group
12 chains of the VP1 coat protein in the same plot. The pris-
matic boundaries split into those of the three tetramers
{1,33,38,47}, {7,21,53,58} and {13,18,27,41}. The refined
enclosing forms of each of the monomers involved are
complex polyhedra with vertices at points of the cubic lattice
(777).

4. Hexagonal forms for clusters with 32 symmetry

Considered first is subgroup 3 of the icosahedral group. The
corresponding clusters are trimers of a coat protein lying
around the threefold axes. Two are the crystallographic
properties expected from Janner (2005a,b,c) for trimers with
axial symmetry 3:

1. an enclosing form with vertices at points of a hexagonal
lattice A;

2. a rational value for the square of the axial ratio ¢/a = y
of the hexagonal lattice parameters a and c: y> = p/q for
integers p and q.

If this is true for the trimers, the corresponding hexamers with
symmetry 32 (obtained by applying to the trimers a twofold

—_

Neloiie ciie Je iR B B =l e UaNo RN BN |
—

[=>RNoREe’sBiN=JiNe 2o NINoJe RN e )
[*)JN=REe.BEN leJNoRNoRN-REN BN [ en JiNe e JiNo JNo)

[ W\l WN-RN-le SNole e ClNo e NiNe)
—_
NelieBNoRNoRe) SNoRe CREN e JiNoRNo BN REN IR |

—_
=}
NoJN-REN BEN|

N0 OO O DO X O NN
o]

DNV ODNLODNXLODNDODNLC OO

(=)}
o
=
(=}

rotation perpendicular to the trigonal axis) share the same
hexagonal form lattice. It is, therefore, convenient to consider
the two expected properties together for a hexamer and for its
trimeric components.

For each coat protein, the 10 hexamers and the 20 trimers
are specified by the chains numbered in the same way as in the
previous two sections. For example, for VP2, the cluster
indicated by {0,9,22;32,50,59} consists of the two trimers
VP2[0], VP2[9], VP2[22] and VP2[32], VP2[50], VP2[59],
respectively, obtained by applying the appropriate subgroup
32 to the starting chain B, = VP2[0].

The basis vectors by, b,, by of the hexagonal lattice A, are
chosen in the standard way: |b,| = |b,| = a, |b;| = c and scalar
products b, - b, = —1a* b, - by = b, - by = 0, with a and c the
hexagonal lattice parameters. The corresponding metric
tensor g,(a, y) is given by

1

N—=

-1 90
1 0], (17)
0 vy

gua.y) =a’| —3

o

0
with y = ¢/a the axial ratio. It is convenient to denote the two
indices n,, n, as planar indices and the third one n; as the axial
index.

In order to verify the validity of the two crystallographic
properties 1 and 2 for the hexamers (and for the trimers), one
has to fix the lattice vectors b, b,, b; with respect to the ico-
dodecahedron of the capsid indicated above.

The axial direction (along b;) is fixed by choosing the
threefold axis associated with one of the 20 dodecahedral
vertices. The projection of the ico-dodecahedron along the
threefold axis is a regular hexagon with radius r, delimited by
the axial projection of six icosahedral vertices (see Fig. 1).
There is, therefore, a relation between r;, and the icosahedral
lattice parameter a,. One finds r, = (27/~/3)a,.

The projected hexagon and the lattice A, are both invariant
with respect to the same subgroup 3 of 532. Therefore, the

276

A. Janner « Human rhinovirus

Acta Cryst. (2006). A62, 270-286



research papers

Table 2
Hexagonal form lattices for hexameric clusters with symmetry 32 (and
trimeric clusters with symmetry 3) of the rhinovirus coat proteins VP1
and VP2.

7, = (2t/~/3)a,, with r, the hexagonal radius of the capsid projected along the
threefold axis and a,, the icosahedral lattice parameter.

Hexagonal Hexamer Trimer Axial

Table 3
Hexagonal form lattices for hexameric clusters with symmetry 32 (and
trimeric clusters with symmetry 3) of the rhinovirus coat proteins VP3
and VP4.

ry = (21/+/3)a,, with r, the hexagonal radius of the capsid projected along the
threefold axis and a,, the icosahedral lattice parameter.

Hexagonal Hexamer Trimer Axial

32 clusters radius height height ratio Lattice 32 clusters radius height height ratio Lattice
hexamers T, H h c/a  Qclass hexamers T, H h c/a Q class
Coat protein VP1 of HRV1A, HRV2, HRV3, HRV14 and HRV16 Coat protein VP3 of HRV1A, HRV2, HRV3, HRV14 and HRV16

{0,9,22; 32,50,59} 6a 10c = +/2r, 3c N . {0,9,22; 32,50,59} 6a de=Zr, ¢ V3 BA,
{1,5,23; 33,51,55) 6a 6c =1r, 2¢ 2 1-Apey {1,5,23; 33,51,55} 6a de=2r, V3 BAp
(2,6,24; 34,52,56} 3a 12¢ = 3r, 3c N V3-Apey (2,6,24; 34,52,56} 10a 6c=13r, c 3 1-Ay,
{3,7,20; 30,53,57) 10a 6c=~3r, ¢ B BrApe {3.7,20; 30,53,57) 6a 10c = /3r, 2c W B Ay,
(4,8,21; 31,54,58} 9a 6c =127, ¢ 2 1-A ey {4,821; 31,54,58} 3a 10c=3r, 2 2 1-Apey
{10,26,45; 15,36,40}  3a 2c=n, 22 V2- Aoy {10,26,45; 15,36,40) 3a 8c =1r, 4¢ 3 1-Apex
{11,27,46; 16,3741} 10a 8¢ =%7, Te 3 1-Apey {1127,46; 163741}  6a 6c=1r, 5¢ ! 1-Ag,
{12,28,47; 17,38,42} 6a 10c =3r, 9¢c 3 1-Apex {12,28,47; 17,38,42} 6a 6c = %r,, 5¢ @ V3-Ay,
{13,29.48; 183943}  7a 12c=%n,  Sc : 1-Apey {13,29.48; 183943}  3a 12c=3r,  5c 2 1-Ape,
{14,25,49; 19,35,44} 4a 6c=r, 2c Z 1-Apex {14,25,49; 19,35,44) 10a 16c =%2r, Tc 3 1-Apex
Coat protein VP2 of HRV1A, HRV2, HRV3, HRV14 and HRV16 Coat protein VP4 of HRV3 and HRV14

{0,9,22; 32,50,59} 6a 10c =1, 3¢ : 1-Apey {0,9,22; 32,50,59} 10a 4ec=r, c 3 1-Ape,
{1,5,23; 33,51,55} 5a 10c = j?’h 3¢ £ V3-Apey {1,5,23; 33,51,55) Ta dc =7, c z 1-Apex
{2,6,24; 34,52,56) 8a 16c=%n, 3¢ 2 1-Apey {2,6,24; 34,52,56) 6a 12c =2y, ¢ N .
{3,7.20; 30,53,57} 3a 6c =27, ¢ o 1-Apey {3.7.20; 30,53,57) 5a 8c=+2r, ¢ N .
{4.8,21; 31,54,58) 4a 10c=3n, 2 £ 1-Apey {4.821; 31,54,58) 8a l4c =2, ¢ N
{10,26,45;1536,40}  7a 10c =4,  6c % 1-Apex {10,26,45; 1536,40}  9a 8c=%r, 3¢ 2 1-Apey
{11,27,46; 16,3741} 10a 6c =17, 2c 1 1-Apex {11,27,46; 16,3741} 10a 6c =1r, 4¢ z 1-A,.,
{12,2847,17,3842}  8a 6c=1%r, 4c 2 1-Apex {12,28,47; 17,38 42} 10a 6c=12r, 5S¢ 2 1-A ey
{13,29,48; 183943}  8a de=2Lr, ¢ N - {13,29.48; 183943}  9a 6c=>5r, 2 > 1-Apey
{142549; 193544}  6a 4c=1r, ¢ B 1-Apey (142549; 193544}  8a 6c=r, 2¢ 4 1-Apey

basis vectors b;, b, have the same orientation as the vectors
B,, B, which point to two vertices of the hexagon. It appears
that for the form lattices of the hexamers the length of b,
(equal to the length of b,) is in an integral relation with the
hexagonal radius r, of the capsid. This is a new remarkable
property valid for all the serotypes considered of the rhino-
virus. Note that an analogous property has already been found
for the tetramers with respect to the projections along the
twofold rotational axes 2, 2y, 2..In the threefold case, one has

2T
V3

so that for given a, the parameters n and y can be used for
characterizing the lattice A,

The description of the hexagonal enclosing forms of the
hexameric chains, numbered as explained, requires a specific
choice of the direction of the possible basis vectors b, b,, bs.
To begin with, three vectors of the ico-dodecahedron are
chosen: vy, v,, v; pointing to the icosahedral vertices at
ay(1,0, —1), ay(0,7,1) and the dodecahedral vertex at
ay(1, 0, 1/72), respectively. The axial direction is clearly given
by v,. The other two vectors v, v, are split into a parallel and a
perpendicular component with respect to v;. The parallel
component is the same for the two vectors:

(V1)” = (Vz)” = %V3- (13)

na=r,=—=a,=1.868...a,, integer n, (18)

The perpendicular components define the vectors B, B, of
the projected ico-dodecahedron:

2
01,0, -1,

B =), = 3 20)
a
B, =(v,), = g"(—l, 37, 7).
One then has indeed

vi = (v + (v = ay(1,0, —1),

21
V) = (Vz)u +(v2) 1 = ay(0, 7, 1),
and the required metrical relations
Bi=B,=r, B, -B,=-1ir. (22)
Finally, the three basis vectors of the form lattice

Ay(a, ) = A,y (n, y) are

b B, a (1 0 b B, a 1 3
=—=—7\|-,U,—7), =—=—7=\—">-5T71),
VA T n 23 T

b= <r, 0, %) (23)

with the relations between the parameters:
c=vya, a=—=r1a,. (24)

The results obtained for all the hexameric and trimeric clusters
with symmetry 32 and 3, respectively, for all serotypes 1A, 2, 3,
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14 and 16 of the rhinovirus are indicated in Table 2 for VP1
and VP2 and in Table 3 for VP3 and VP4, for VP4 only for the
serotypes 3 and 14. From the data reported in these tables
follows the validity of the two crystallographic properties 1
and 2 formulated above. In these tables, one also finds that the
height H of the hexamer in the axial direction is a multiple of
the parameter ¢ and in a simple relation with the hexagonal
radius of the projected capsid:

m
H =mc=—yr,. (25)
n

Similar considerations apply to the height of the trimer,
indicated by A, which is also the height of each monomer in the
same direction.

A first example is illustrated in Fig. 7 by the hexameric
cluster {10,26,45; 15,36,40} of VP1 and serotype HRV1A. One
sees that the parameters a, ¢ of the form lattice satisfy the
relations: 3a = r,,¢c = h,2c = H = (1/3/2)r,.Son =3,m =2
and the axial ratio is 34/2/4. This lattice is rationally equiva-
lent to the integral lattice denoted +/2-A,,,, characterized by
an axial ratio +/2. [See Janner (2004) for more details.] The

1331 03]

Figure 7

The form lattice for the hexameric cluster {10,26,45;15,36,40} of VP1
and serotype HRV1A is an integral hexagonal lattice with parameters
a=1ir,andc=(1 /2+/2)r,, where r,, is the hexagonal radius of the capsid
projected along the threefold axis and c is the height 4 of the monomer
(and of the trimer), half the height H of the hexamer. The axial ratio is
y = c¢/a = 3+/2/4. The planar and axial indices of the enclosing form are
indicated in the projection along the threefold axis and perpendicular to
it, respectively. Some of the monomers are plotted enhanced. The
projected boundary of the capsid is indicated by dashed lines.

hexamer is enclosed between two hexagonal prisms having
vertices with the indices [30 £ 1], [33 £ 1], ..., [0 — 3 £ 1] for
the external envelope and indices [20+1], [22+1],...,
[0 — 2 £ 1] for the internal one, respectively. This form splits
into three dimeric forms with integral indices. In particular,
the form enclosing the dimer VP1[26] and VP1[40] has eight
vertices indexed by [33 £ 1], [03 £ 1], [02 £ 1], [22 £ 1].

A second example is given in Fig. 8 for the cluster
{3,7,20;30,53,57} with 32 symmetry of VP4 in HRV3. The
hexamer is enclosed in a prism with height H = 8¢ = /27,
and hexagonal basis with radius 2a, where r, = 5a. So n =5,
m =8 and the axial ratio is y = 5+/2/8. The height of the
trimer is 4 = c. The form lattice belongs again to the integral
lattice class v/2-A,.,.

The third example is a form lattice that belongs to the
isometric hexagonal class 1-A;,: one has indeed H = r,,. This
case occurs for the cluster {0,9,22;32,50,59} of VP2. The
chains plotted in Fig. 9 are those of the rhinovirus HRV16.
One has r, =6a, H=10c and h =3c. The axial ratio
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Figure 8

In a way similar to that in Fig. 7, the hexameric cluster {3,7,20; 30,53,57}
of the VP4 coat protein, serotype 3, is enclosed in a prismatic form with
vertices at points of a hexagonal lattice. One now has a = b = ir, and
¢ = (+/2/8)r,. The axial ratio is c/a = (5/8)+/2, so that the lattice is
integral and rationally equivalent to «/E—Ahex. The height 4 of the
monomer and of the trimer is ¢ and that of the hexamer is H = 8c.
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¢/a =7y =3/5 is rational, thus rationally equivalent to the
ratio 1, as already pointed out. The vertices of the prismatic
form enclosing the hexamer have the planar and the axial
indices indicated in Fig. 9. One also easily finds the indices of
the forms of the single monomers. For example, the chain
VP2[22] is a prism with hexagonal indices given by [335], [535],
[645], [455], [332], [532], [642], [452]. The last example, shown
in Fig. 10, is the cluster {11,27,46; 16,37,41} of VP3, serotype 2.
One now has: r, = 6a, H = 6¢ = 1r,, h = 5c. The form lattice
A, has the axial ratio y = 1 and belongs again to the isometric
hexagonal class 1-A;,. The planar and axial indices of the
various enclosing forms are indicated in Fig. 10. In particular,
the prism enclosing the chain VP3[27] has vertices with the
hexagonal indices [343], [543], [563], [363], [342], [542], [562],
[362].

The data reported in Tables 2 and 3 for the four coating
proteins and all the hexameric and trimeric clusters with
symmetry 32 and 3, respectively, allow one to verify the
validity of the properties exemplified so far. These forms are
not always the optimal ones for the single monomers.

Figure 9

The height H of the VP2 hexamer {0,9,22; 32,50,59}, serotype 16, is equal
to the radius r, of the hexagonal enclosing form, the same as of the
projected capsid along the threefold axis and of the central equilateral
triangular basis. The planar and axial indices for the six monomers
involved are expressed with respect to the form lattice A,(a, c) with
a=b=1r, and ¢ =5r,. The axial ratio is y =32 so that A,(a,c) is
rationally equivalent to the isometric hexagonal lattice 1-A,,.

5. Pentagonal forms for clusters with 52 symmetry

For each coat protein, there are 6 decamers with symmetry 52
and 12 pentamers with symmetry 5 arranged around the
fivefold axes. In a way similar to that in the previous sections,
these clusters are specified by sets of numbers where a
given number indicates the rotation yielding the chain from
the starting one numbered as 0. In the present case, a
decamer consists of two dyadically related pentamers
labeled by five numbers, one for each chain, like in
{5,17,22,41,49;12,27,35,51,59}. The clusters are delimited by
polyhedra with vertices at a point of a decagonal lattice A,
with lattice parameters a, ¢ and axial ratio y = c¢/a, as in the
previous hexagonal case. The difference is that a decagonal
lattice requires five basis vectors: one along the fivefold axis
and four in a plane perpendicular to it. This set of vectors is
linearly independent of the rationals (not of the reals) and,
therefore, only meaningful for positions with rational indices
(as in the case of the icosahedral lattice). Moreover, the lattice

Figure 10

The VP3 hexamer {11,27,46;16,37,41} of HRV2 is enclosed in a way
similar to the hexamer of Fig. 9. The form splits into six prismatic
monomeric ones with vertices at points of a hexagonal lattice, rationally
equivalent to the isometric 1-A,,. The lattice parameters area = b = ir,
and ¢ = {5r,, so that the axial ratio is 1. The height of the hexamer is
H =1r, and that of the monomer and of the trimer is 4 = 3r,. The
planar and axial indices of the prismatic forms enclosing the monomers
are indicated. The dashed line marks the projected boundary of the
capsid.
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points are dense in planes perpendicular to the fivefold axis, so
that only positions with small indices are structurally relevant.
A new strategy is required for getting the indices of the forms.

In the standard choice, the five decagonal basis vectors d, of
A (a, ¢) have length and angles determined by the metrical
conditions

2
dy-d = a* cos
5 (26)

k#5.

|dk| =a,

lds| =¢, d,-ds=0,
The orientation of these basis vectors is fixed by the icosa-
hedral vertices of the ico-dodecahedron projected on the
plane through the origin perpendicular to a fivefold axis: ten of
the projected vertices define a regular decagon with radius r,
and the remaining two its center (see Fig. 1). Decagon and
decagonal lattice A, are left invariant by the chosen subgroup
52 of 532. One can, therefore, follow similar logical steps as in
the hexagonal case. There is, first of all, a relation between the
radius r, and the icosahedral lattice parameter a,:

[000-1] [1000]

2-2-1175
d321)05 [-1-2-3-4)/3

[D100] &= = [00-10)

\

f

[123-1)/5 [1-3-2-1)/5

=1321)/5 [-1-2-31)/5

= [0-100)

[1234)/5 [4-3-2-1)/5
[-1-221)/5
[-1000] [0001]
[2111] [01-10]
7 \.\"\
e TO00-1] %
P 100] 1000

[001-1], = [-1-1-1-2]
/ \

[-1100) < >1m

(1] [00-10]
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A

' [00-11]

»
(1112 sy -1000) {0-100]

0001

[0-110] [-2-1-1-1]

Figure 11

Two ways of indexing a { 10/2 } star decagon are indicated. In the upper
part, the decagonal basis vectors point to vertices of the larger decagon.
The indices of the central decagon are fractional, with 5 as denominator.
In the lower part, the decagonal basis vectors selected are those defined
by the smaller decagon and the indices of all vertices are integers. This
shows that the polygrammal scaling S, which transforms the external
decagon into the internal one, corresponds to a centering transformation
for the two decagonal lattices generated by the corresponding bases.

2T
vV, — ——
a NTH2

In order to fix the orientation of the vectors d,, one decom-
poses the basis vectors a,, a;, a4, as of the icosahedral lattice
generated by the basis defined in (3) into a component parallel
to the fivefold axis along a; = a,(1, 0, t) and one perpendi-
cular to it. All parallel components are given by

a, ~ 1.701a,. (27)

T
+2

(ak)II =a,cosd = - ay(1,0,7), k=2,3,4,5, (28)
with § the angle of a, with the fivefold axis. The perpendicular
components (a, ), together with a, define a decagonal basis for
the lattice A ,(r,, ¢) adapted to the icosahedral symmetry. This
basis is not necessarily a basis for the form lattice A ,(a, c¢) so
that, in general, the vertices of the forms enclosing the deca-
meric and pentameric clusters are indexed by fractions instead
of by integers. It is a basis usually denoted as the conventional
basis for A,(a, c) considered as a centering of the primitive
lattice A (r,, ¢). One finds:

3t+1 1 T+2
5 77 5

dy =(ay), = ao(

JiF2 5
- Tl(;er<r 12,2 2+ 1) — [1000, 0],
T

—214+1 —7+3
d, = (a3), = ao( 3 , Ty 5 )

)
\S)

= YIE2, (r—3,5 30— 4) = 0100, 0],

0
2t+ 4 4t -2
d; = (a,), = a, <_ 5 , 0, 5 )

= Tl(;r r(—47 42,0, =27 + 6) = [0010, 0],

—2t+1 —T7+3
d, = (as), = a0< 5 , =T, 5 )

- 71: ri(t — 3, =5, 37 — 4) = [0001, 0],

1

[

3

;

dg = c(1, 0, 7) = [0000, 1].

Q
_l’_
\S)

(29)

One verifies the metrical relations (a,); + (a;), = a; and (26)
for a = r,. For clearness, the planar indices n,, n,, ns, n, are
separated from the axial index ns; by a comma.

As already stated, the basis d = {d,, d,, ..., ds} generates
the primitive decagonal lattice A(r,, ¢). By centering, one gets
the other decagonal form lattices A(a, c). The general relation
na = ry,, integral n of the hexagonal case is replaced by

wa=ry;, @ decagrammal scaling factor.

The derivation of these scaling factors is a technical problem,
not suitable for treatment here. The particularly important
case of the star decagon {10/2} is presented as an example.
The Schifli symbol {n/m} denotes the star polygon
obtained from a regular n-gon by joining each vertex i with the
next i + m one (Coxeter, 1961). The scaling factor u =

n/mj}
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relates the external regular polygon to the central one. For
n =10, m = 2, the decagrammal scaling factor py,,,, is given
by
cos (7/5) T ry
= = =—=0.8507... 31
Fuor) = o (m/10)  J/T4+2 2a, S
The planar scaling transformation Sy, with scaling factor
Hi10/23» When expressed in the basis d = {d,, ..., ds}, is given
by the matrices

1 4110
233 20
1] =
S[10/2)(d):§ % 2 2 2 0},
41110
000 0 1
_ (32)
00120
10110
Swp@=]11 11 1 o],
01210
00 0 0 1

which are the centering matrices for this case. Accordingly, the
star decagon {10/2 } has vertices with fractional indices in the
conventional basis and integral ones in the basis of the
centered lattice A (a, ¢) with

2
a = Wpopyta = _2; s (33)
0

as indicated in Fig. 11 in the planar version. The star decagon
{10/3} also plays an important role in the crystallographic
properties of the pentagonal and decagonal clusters consid-
ered. The scaling factor g3 is the inverse of the golden
number t:
cos(37/10) 1
Kio/3) :W:;:O.&S... (34)
The planar scaling transformation S;;,,;, leaves the primitive
decagonal form lattice A,(r,, ¢) invariant and in the basis d is
represented by an invertible integral matrix.
The height H of the decamer and the height 4 of the
pentamer, which is also the height of the monomers in the
same axial direction, are a multiple of the lattice parameter c:

H =pc, h=gqc, p,q integers. (35)

The results obtained for all the decamers and pentamers with
symmetry 52 and 5, respectively, are reported in Table 4. The
table shows that the external envelopes (with radius r,) are in
decagrammal scaling relation with the corresponding central
boundaries (with radius 7,) and that the form lattices are
integral, i.e. have a scaling ratio squared given by a simple
fraction. In many cases, one finds y = 11—6 and y = %, both being
rationally equivalent to the isometric decagonal lattice 1-A 4.
Actually, the refined boundaries of monomers or dimers still
possibly have vertices with integral and half-integral indices
when expressed with respect to the form lattices A(a, ¢)
indicated in Table 4.

Fig. 12 presents a simple example of the centered decagonal
form lattice A,(a, c) with the lattice parameter a = w574
discussed above. The enclosing form of the VP1 decamer
{6,18,23,42,45;13,28,36,52,55} splits into forms for dimers
with monomers pairwise related by a twofold rotation
perpendicular to the fivefold axis. The lattice parameter c is
determined by the distance of the pentamers from the plane of
the dyads. It is a situation observed several times in axial-
symmetric proteins (Janner, 2005a,b,c). Moreover, the total
height H = 22¢ of the decamer ensures that the form lattice is
integral and has the axial ratio y = The next case is
presented to show that the parameter a of the form lattice is

[0100] £

I\n\
|/ 2
|/

/!

s

7T 23325

7=

A

g e

Figure 12

The boundaries of the VP1 decamer {6,18,23,42,45; 13,28,36,52,55} split
into five prismatic enclosing forms with vertices at points of the {10/2 }-
centered decagonal lattice A,(a, c) (compare with Fig. 11), with lattice
parameters a = fiyo57, and ¢ =Lta, where r, is the radius of the
decagon delimiting the capsid projected along the fivefold axis.
Accordingly, A,(a,c) is rationally equivalent with the isometric
decagonal lattice 1-Ay.. The height of the decamer is H =a =22c
and that of each monomer is 2 = 10c (one monomer is enhanced). The
dashed lines indicate the star decagon {10/2} and the decagonal
boundary of the projected capsid, respectively.
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not only determined by the planar indices. Indeed, the VP1
decamer {9,16,21,40,48;11,26,39,50,58} is confined in the
axial view by two decagons related by the decagrammal
scaling S5 with scaling factor (g5 = 1/7. It is, therefore,
possible to assign the integers indicated in Fig. 13 for the
planar indices of the vertices, typical for the points of the
primitive decagonal lattice A,(r,;,c¢). The height of the
decamer, however, H = [i(y9/,7,, indicates that the parameter
a is that of the centered lattice. With H = a = 8¢, one then
gets the same axial ratio § as in several other cases (see Table
4). Again, the lattice parameter c gives the distance of the

[1111]

H=a
Figure 13
In axial projection, the boundaries of the VPl decamer

{9,16,21,40,48; 11,26,39,50,58} are complementary to those of the
decamer plotted in Fig. 12. The height H of the decamer is equal to the
parameter a = [jo/5 7, Of the form lattice which is integral and a 10/2-
centered one. The height of the monomer is & = 3c and the axial
parameter is y = 1 The external decagonal boundary has the same radius
r, as the projected capsid. The central decagonal boundary follows from
the external one by the decagrammal transformation Sy, with scaling
factor 1/t. All vertices are at points of the lattice A,(a, ¢). The star
decagon { 10/3 } and the boundaries of the projected capsid are indicated
by dashed lines.

pentamers from the plane of the dyads. In the decagonal
plane, the dimeric forms appearing in Fig. 12 and Fig. 13 have
radially a perfect match.

The third example presented in Fig. 14 has been chosen
because it nicely shows the various decagrammal scaling
relations between the vertices of the form enclosing the VP3
decamer {0,1,2,3,4;30,31,32,33,34}, despite (or perhaps

RINPY

[0-100]

[-4]

Figure 14

The VP3 decamer {0,1,2,3,4; 30,31,32,33,34} is a nice example of the
crystallographic character of the enclosing form. The lattice parameter ¢
is given by the height /4 of the monomer. The height H of the decamer is
8¢ and equal to (1/+/2)a with the lattice parameter a = 7°r,, where r, is
the decagonal radius of the capsid. The decagrammal scaling S5, leaves
the decagonal lattice invariant, so that the lattice parameter o' = r, is
equivalent to @ and A (a, ¢) is an integral lattice, rationally equivalent to
/2-A,.. All vertices in a given decagonal plane (perpendicular to the
fivefold axis) are connected by decagrammal scaling relations. The most
important ones are indicated in the upper part by dashed lines. Those of
the lower part give the projected boundary of the capsid.
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Table 4

Decagonal form lattices for decameric clusters with symmetry 52 (and pentameric clusters with symmetry 5) of the rhinovirus coat proteins.

ry = (2t//T + 2)a,, with r, the decagonal radius of the capsid projected along the fivefold axis and a, the icosahedral lattice parameter.

Clusters with a lattice Envelope
symmetry 52 parameter radius r,
decamers and pentamers afr, /Ty

VP1 coat protein (HRV1A, HRV2, HRV3, HRV14, HRV16)

{0.1,2,3.4; 30,31,32,33,34} 1 (ra/2a,)(1/7)
{5.17,22,41,49; 12.27,35,51,59) r/2a, 1
{6,18,23,42.45; 13.28,36,52,55) ro/ 24, 1
{7.19,24,43 46; 14.29,37,53,56) 1 1
{8,15,20,44,47; 10,25,38,54,57) ra/24, 1
{9,16.21,40,48; 11,26,39,50,58} ra/2a, 1

VP2 coat protein (HRV1A, HRV2, HRV3, HRV14, HRV16)

{0.1,2,3.4; 30,31,32,33,34) ro/2a, 1/t
{5,17,22,41,49; 12.27,35,51,59) 724, 1
{6.18,23,42,45; 13,28,36,52,55) ro/2a, 1
{7.19,24,43 46; 14,29,37,53,56) ro/2a, ro/ 24,
{8,15,20,44,47; 10,25,38,54,57) 724, ra/2a,
{9.16,21,40.48; 11,26,39,50,58) r4/2a, 1

VP3 coat protein (HRV1A, HRV2, HRV3, HRV14, HRV16)
{0,1,2,3,4; 30,31,32,33,34} i 1/t

{5,17,22,41,49; 12,27,35,51,59} ry/2a, 1
{6,18,23,42,45; 13,28,36,52,55} r./2a, 1
{7,19,24,43,46; 14,29,37,53,56} ry/2a, cos(1r/10)
{8,15,20,44,47; 10,25,38,54,57} ry/2a, cos(1r/10)
{9,16,21,40,48; 11,26,39,50,58} ry/2a, 1

VP4 coat protein (HRV3, HRV14)

{0,1,2,3,4; 30,31,32,33,34} 1 (ra/2a,)*(1/7)
{5,17,22,41,49; 12,27,35,51,59} 1 cos(1r/5)
{6,18,23,42,45; 13,28,36,52,55} 1/t cos(1/5)
{7,19,24,43,46; 14,29,37,53,56} 1 1/t
{8,15,20,44,47; 10,25,38,54,57} 1 1/7)/(r,/2ay)
{9,16,21,40,48; 11,26,39,50,58} 1/t cos(1/5)

thanks to) the complexity of the beautiful form. This form has
vertices at points of the primitive decagonal lattice A ,(r,, ¢),
the same as the lattice A,(a,c) for the parameter a = 7°r,
indicated in Fig. 14, owing to the lattice invariance with
respect to the decagrammal scaling S,;¢/3)-

6. Axial-symmetric forms for clusters with 532
symmetry

As already mentioned, two fundamental properties of proteins
with axial symmetry have been observed (Janner, 2005a,b,c):

1. enclosing forms with vertices at points of a lattice A(a, ¢)
invariant with respect to the axial symmetry;

2. simple fractional value of the axial ratio squared,

¥?* = (c/a)?, of the lattice parameters a, c. The lattice A(a, c)is,
therefore, rationally equivalent to an integral lattice.
These properties have been verified so far for tetramers,
hexamers and decamers of the coat proteins of rhinovirus. The
cluster formed by the full icosahedral set of each coat protein
has of course the axial symmetry of the subgroups 222, 32 and
52, respectively, as already pointed out at the beginning. One
may wonder whether the properties mentioned above are also
true for an icosahedral cluster. This is indeed the case as
indicated in Table 5.

Central hole Decamer Pentamer Ratio
radius r, height height c/a
ro/Ta H h y
0 10c = 2r, 2 L
ra/2a, 8c=a 6c 1
r./2a, 2c=1a 10c L
(ra/2a0)(1/7) 24c = %rd 6¢ %
(rq/2a0)(1/7) l4c=1a 4c %
1/t 8c=a 3¢ i
(r/2ay)(1/7)? 34c = %a 6c %
r,/2a,)? 6c =3a 6¢ T
( d/ ()) 8 i6
1/t 18c =2a 6¢ =
(/07 /2a,) 1dc =1a 2 !
(ra/2a0)(1/7) t4e = La 4 i
(rd/2a“)2 10c = %a 5¢ #
(r4/2a,)(1/7)° 8c=-"1a c ;f
1/t 14c =24 10c 12
cos(7r/5) cos(/10) l6c=a Tc =
(1/7) cos(m/10) l4c=1a 4c :
(1/7) cos(rr/10) l4c =1a 4¢ 1
(ra/2ay) 16c =a 5¢ #
(rd/zao)(l/'[)5 12¢ = %rd c é
(r,/2a,) cos(r/5) 6c=-"Lr, 4c L.
1/t 6c = 2 W
0.47 (7) 10c =¢r, 2 3
(1/7)/(ry/2a,) 8¢ =27, 2% i
1/t 10c=a 3¢ L

The refined enclosing forms of the icosahedral clusters with
vertices at points of the lattices indicated in Table 5 are
particularly interesting when viewed along the axis of the
corresponding rotational symmetry because this reveals the
existence of a number of channels. The situation is illustrated
in Fig. 15:

(a) for VP1 and 222 symmetry by a cubic form lattice with
parameter a = a,./11 = 7a,/11;

(b) for VP2 and 32 symmetry by a hexagonal form lattice
with a = r,/11;

(c) for VP3 and 52 symmetry by a set of vertices at points of
a decagonal lattice and in various decagrammal scaling rela-
tions.

In this figure, the planar indices are only indicated for a limited
number of vertices.

7. Results and perspectives

Central to this paper are the concepts of crystallographic
scaling and of integral lattice. A scaling transformation of the
coordinates is crystallographic if it is faithfully represented by
a matrix with integral entries and determinant larger than or
equal to 1. A lattice is integral if the metric tensor of the basis
vectors is proportional to one expressed by integers. It is
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Table 5
Form lattices for the icosahedral clusters of the rhinovirus coat proteins
considered with respect to the axial-symmetry subgroups 222, 32 and 52.

Same notation as in the previous tables.

Axial

symmetry Parameters VP1 VP2 VP3 VP4

222 a./a=a,/b=a./c 11 8 11 9

32 r,/a 11 11 11 9
Hir, Vi i B V2
y=c/a 11/3 113 11/3 92

52 ry/a 1 1/7% ry/(2tay) 1
H/r, 2 /2 2tay/ry 3/2
y=c/a 2 1/42 1 3/2

nature that reveals the relevance of these concepts in a subtle
interplay between integer numbers, geometry and biology. In
one dimension, rabbits have been the model for the Fibonacci
numbers and their generation, which is in fact a crystal-
lographic scaling transformation. More recently, self-similar
patterns in proteins have been recognized, analogous to those
already observed in quasicrystals, opening the door for a
crystallographic characterization of protein’s enclosing forms
with vertices at lattice points. Surprisingly enough, these
lattices appear to be integral. This observation has been the
starting point for an investigation of the abundance of integral
lattices in all known crystal structures (de Gelder & Janner,
2005a,b). In the present paper, it is the icosahedral geometry
of viruses that interacts with their biological characterization
and shines light on new geometrical and biological aspects.

7.1. Geometry

An icosahedron has vertices at points of a lattice with six
basis vectors. This lattice is invariant with respect to one-, two-
and three-dimensional scaling transformations which are,
therefore, crystallographic. The one-dimensional scalings are
of the Fibonacci type with scaling factors that are powers of
the golden number t. The two-dimensional (planar) scalings
are related to polygrammal ones, characteristic in particular
for the star decagons denoted by {10/4}, {10/3} and {10/2}.
The three-dimensional radial (isotropic) scalings have powers
of 7 as scaling factors. It is natural, but still surprising, to find
relations between the decagrammal scaling factors and the
icosahedron in terms of 7 and other icosahedral parameters:

T 1 a ayt

Hiio2y = ﬁ7 HMii03y = T a_(j.’ Hito/4y = %, (36)
with a, the icosahedral lattice parameter, a, half the edge of
the square and r, the radius of the regular decagon obtained
by projecting the icosahedron along a twofold and a fivefold
axis, respectively. Still open is the general case of possible
connections between crystallographic regular polytopes and
planar polygrammal scalings.

There is also the problem of finding all crystallographic
polyhedra with icosahedral symmetry. A polyhedron with
icosahedral symmetry is said to be crystallographic if it has

vertices at points of an icosahedral lattice (possibly centered).
The icosahedron and the dodecahedron are such. The ico-
dodecahedron, defined in this paper, is a further non-trivial
example. The solution of this problem is similar to the one
solved by Caspar & Klug (1962) for deltahedra in terms of
icosadeltahedra with triangulation numbers 7. The ico-
dodecahedron corresponds to the 7'=3 case. Not all the
properties of the ico-dodecahedron have been presented here.
In particular, the scaling transformation relating the icosa-
hedral vertices to the dodecahedral ones has only been
mentioned. This relation shows that 8 of the 20 dodecahedral
vertices form a cube and the remaining 12 are the icosahedral
transformed ones.

Not every icosahedral virus obeys the rules of Caspar &
Klug. This structural puzzle has been solved by Twarock for
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Figure 15

Icosahedral clusters of the major coat proteins. The VP1 proteins (red),
viewed along the twofold axis (lower part) have a cubic form lattice with
parameter a = (t/11)a,, where a, is the icosahedral lattice parameter. In
the direction of the threefold axis, the VP2 proteins (green) have a
hexagonal form lattice with a = {; r,,. In the fivefold orientation (upper
part), the VP3 proteins (blue) reveal the decagrammal structure of the
various channels. The monomeric chains VP1[0], VP2[0] and VP3[0] are
plotted in black. More details are given in Table 5.
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the family of Papovaviridae by means of a Penrose-like
tessellation (Twarock, 2004). In a subsequent paper, Keef &
Twarock developed a comprehensive mathematical frame-
work for the derivation of all surface structures of the virial
particles in this family (Keef & Twarock, 2005), answering for
the Papovaviridae the two mathematical questions formulated
above.

An alternative general procedure for deriving crystal-
lographic polyhedra based on icosahedral scale rotations is
presented in Janner (2006). The new approach includes as
special cases the triangular net construction of Caspar & Klug
and the tessellation obtained by Twarock.

The question then arises whether the morphological char-
acterization of the rhinovirus presented here is an optimal
one. The answer to this question is not trivial, because in
principle all polyhedra with vertices at points of the three-
dimensional projection of the six-dimensional icosahedral
lattice are allowed. The set of these points (all having integral
indices) is dense. Therefore, additional conditions have to be
imposed. One of these conditions is that the number V of
vertices should be limited by the number of morphological
units considered. In the Caspar—Klug approach, the number of
vertices is expressed in terms of the triangulation number T
and one has V = 107 + 2. For the rhinovirus 7 is 3. This limits
the enclosing form to be composed of an icosahedron
(V, =12) and a dodecahedron (V, = 20). The scaling ratio
between the two is not determined by V and one needs a
second condition which in the present crystallographic char-
acterization is very natural: only small rational indices have a
structural meaning and are allowed. In the case of crystal
growth forms, this condition is well established.

The ico-dodecahedron adopted here satisfies both condi-
tions. A look at Fig. 2 shows that the dodecahedral vertices
(full circles) fix the graphical fitting, the value of the icosa-
hedral lattice parameter a, and, for the indices indicated, the
lattice basis as well. Moreover, the projected boundaries of the
capsid along the icosahedral axes only permit very small
deviations from the icosahedral vertices indicated (larger
circles). Such changes always lead to high indices and have to
be rejected. It should be clear that the properties pointed out
are those of the enclosing polyhedral forms for the various
morphological units and not directly properties of the mono-
mers involved. For a given morphological unit, deviations
from the ideal encasing form is not surprising and has to be
accepted as such. In any case, it makes little sense to optimize
one single case. One never finds a perfect agreement between
geometric form and real structure. Sometimes the deviations
are larger than what one is inclined to accept. In such a
situation, one has to consider a sufficient number of different
cases ensuring that the properties pointed out are significant
and not purely accidental.

7.2. Biology

From the biological point of view, one of the main results is
that rhinovirus has a strongly correlated structure, like the
examples of axial-symmetric proteins considered in previous

papers (Janner, 2005a,b,c). This means that the architecture
of the virus is built of structural units that are all
expressible in terms of one single length connecting the
real structure with the geometry. Keef & Twarock arrive
for the Papovaviridae at a similar conclusion for the surface
scaling relations between morphological units. These scalings
are expressible in terms of only one scaling factor (Keef &
Twarock, 2005). In the present case, the single parameter can
be chosen to be a,, the icosahedral lattice parameter of the ico-
dodecahedron enclosing the capsid. This is the ideal case. In
the real case, one observes small variations in the value of a,,
which are of the order of a few per cent, depending on the
serotype, on the coat protein and on the axial-symmetric
cluster considered.

From a more general point of view, viruses can be classified
according to their biological activity and to their geometrical
structure. The relation between the two points of view is of
fundamental importance. Another distinction is between the
conserved and the varying structural elements in viruses. The
present investigation reveals conserved geometrical features
in the genus rhinovirus of the family 7 = 3 picorna viruses. It
has been shown that the set of crystallographic forms
enclosing clusters of coat proteins with a given axial symmetry
is conserved in the five different serotypes considered. It is
natural to conjecture that this is also true for all the 100 or
more serotypes.

The question then arises about possible geometrical
elements characteristic for a given serotype. On the basis of
the results obtained for the GroEL and GroES chaperonin
(Janner, 2003a,b), one can hope that enclosing forms of
segments of the monomeric chains will lead to the desired
goal. This same approach should give further information on
the folding, because a chain reaching the form boundary has
only two possibilities: to stop or to fold.

Alternative to a more detailed geometrical characterization
of the conserved structural organization of HRVs is a
comparison between different orderings, as expected in
modified rhinoviruses like the HRV-HIV-1 chimeras. This
could represent a step forward in a structure-based approach
of vaccine design.

In the icosahedral case, the number of different indexed
forms enclosing a single monomer is incredibly large. This
number is of the order of 32 for each coat protein: 15 for the
tetramers, 10 for the hexamers and 6 for the decamers and one
for the icosahedral cluster, as summarized in the various
tables. Additional clusters have also been investigated, but not
in a systematic way. The mutual relations between these forms
are sometimes evident, sometimes obscure because not
familiar and difficult to visualize in three dimensions. In any
case, the knowledge of the geometry of these forms should
allow the use of symmetry-adapted coordinates for the local
characterization of a given active site.

An explanation of the crystallographic character of the
enclosing forms and of their lattices is still missing. They all fit
with the geometrical boundary of the virion. This suggests the
idea of a capsid as a kind of resonator, with nodes of wave-like
eigenmodes at the various lattice points.

Acta Cryst. (2006). A62, 270-286

285

A. Janner + Human rhinovirus



research papers

References

Arnold, E. & Rossmann, M. G. (1990). J. Mol. Biol. 211,
763-801.

Caspar, D. L. D. & Klug, A. (1962). Cold Spring Harbor Symp. Quant.
Biol. 27, 1-24.

Coxeter, H. S. M. (1961). Introduction to Geometry. New York:
J. Wiley.

Gelder, R. de & Janner, A. (2005a). Acta Cryst. B61, 287-295.

Gelder, R. de & Janner, A. (2005b). Acta Cryst. B61, 296-303.

Hadfield, A. T., Lee, W., Zhao, R., Oliveira, M. A., Minor, I,
Rueckert, R. R. & Rossmann, M. G. (1997). Structure, 5, 427-441.

Janner, A. (2003a). Acta Cryst. D59, 783-794.

Janner, A. (2003b). Acta Cryst. D59, 795-808.

Janner, A. (2004). Acta Cryst. A60, 611-620.

Janner, A. (2005a). Acta Cryst. D61, 247-255.

Janner, A. (2005b). Acta Cryst. D61, 256-268.

Janner, A. (2005¢). Acta Cryst. D61, 269-277.

Janner A. (2006). Acta Cryst. A62. In the press.

Keef, T. & Twarock, R. (2005). g-bio.BM/0512047, pp. 1-21.

Kim, S., Smith, Th. J., Chapman, M. S., Rossmann, M. G., Pevear,
D. C, Dutko, F. J., Felock, P. J,, Diana, G. D. & McKinlay, M. A.
(1989). J. Mol. Biol. 210, 91-111.

Twarock, R. (2004). J. Theor. Biol. 226, 477-482.

Verdaguer, N., Blaas, D. & Fita, I. (2000). J. Mol. Biol. 300, 1179-1194.

Zhao, R., Pevear, D. C., Kremer, M. J., Giranda, V. L., Kofron,
J. A, Kuhn, R. J. & Rossmann, M. G. (1996). Structure, 4,
1205-1220.

286

A. Janner « Human rhinovirus

Acta Cryst. (2006). A62, 270-286



